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Executive summary 
This document provides a detailed description of the methodologies developed within EIFFEL 

project aiming to address aspects related with the temporal augmentation and quality 
improvement of time series datasets (see WP4 and T4.1). More specifically, the proposed 
approaches consist of a toolkit designed to cope with three, common in time series modelling, 
challenges/problems, that is: 1) the generation of statistically consistent stochastic realizations, 
2) infilling of time series missing values, and 3) Lower-scale extrapolation (i.e., downscaling) of 
timeseries statistics. Further to the above, the report demonstrates the application of the 
methods via representative datasets of a variety of variables, which are also of high interest for 
the project’s pilots (e.g., precipitation, temperature, streamflow, air quality related quantities, 
etc.). 
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1  Introduction 
This report aims to provide a detailed description of the theoretical background and 

implementation aspects of methods/tools developed within T4.1 (“Stochastic methods for 
temporal augmentation and quality improvement of time series datasets” led by ICCS). The Alpha 
version of the methods (coded in R programming language) can be found in the project’s 
repository and is employed for internal testing since MS9 (as dictated by the project’s DOW for 
MS9’s “Means of verification”). 

T4.1 is designed to address challenges, and common modelling tasks, related with the 
augmentation of the temporal dimension of time series data. It is reminded that T4.1 consists 
the design and development of theoretically justified methods and tools, based on statistical and 
probabilistic notions such as those of, time series analysis (e.g., Bras and Rodríguez-Iturbe 1985; 
Tsay 2013), stochastic processes (e.g., Papoulis 1991) and copulas (e.g., Sklar 1973; Embrechts et 
al. 2003; Nelsen 2007), to address three key challenges of CC-related time series datasets. More 
specifically, the developed methods/tools are coping with the following problems (P):  

P.1: Infilling of time series missing values, 
P.2: Generation of statistically consistent stochastic realizations for time series data, and 
P.3: Lower-scale extrapolation of time series statistics (e.g., temporal downscaling of key 
statistical properties). 

1.1 Context 

 Objectives 

The deliverable D4.1 is directly linked with the following objective of EIFFEL project (according 
to the Grant Agreement1): 

• (O2) EIFFEL will leverage techniques of Explainable AI to develop tangible indicators for 
CC impacts; it will also make use of super resolution, data fusion and stochastic modelling 
techniques to generate spatially and temporally explicit information from the untapped 
pool of GEOSS. 

Since D4.1 is a method-oriented report, its outputs are indirectly related with all EIFFEL pilots, 
hence indirectly related with other objectives of the project. 

 Work plan 

This report, Deliverable D4.1 corresponds to T4.1: Stochastic methods for augmenting the 
temporal resolution and quality of CC-related datasets (M3-M30) (Leader ICCS). It is part of WP4: 
Improving temporal, spatial resolution and data quality of CC related datasets (M3-M30) (Leader 
ICCS). The methods/tools developed within D4.1 could provide a valuable modelling toolkit for 
the EIFFEL pilots (i.e., WP7).  

 
1 See, Part B, Table 1. 
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 Milestones 

D4.1 is linked to MS92 and MS103 

 Deliverables 

Due to its methodology/research-oriented nature D4.1 is to a large extend a standalone 
deliverable which details methods/tools related with the temporal augmentation of timeseries 
datasets. Hence the methods/tools described herein could be used by the EIFFEL pilots (i.e., WP7) 
in cases where such modelling activities are involved. 

1.2 Intended readership and document structure 

The dissemination level of this report is public. It is specifically intended for partners working 
on WP4 (Improving temporal, spatial resolution and data quality of CC related datasets – Leader: 
ICCS) as well as WP7 (EIFFEL Pilot demonstrations and impact assessment).  The remainder of the 
document is structured as follows: 

• Section 2 provides the necessary theoretical background for the development of 
D4.1/T4.1 methods/tools. 

• Section 3 details the methodologies and implementation steps for: (§3.1) infilling of time 
series missing values, (§3.2) the generation of statistically consistent stochastic 
realizations, and (§3.3) Lower-scale extrapolation (i.e., downscaling) of timeseries 
statistics. 

• Section 4 utilizes more than 2400 time series datasets to demonstrate the functionality 
of the proposed methods (fulfilling this way the target set by the O2-related KPI-2.24). 

The document is summarized with the conclusions section (Section 5) and provides various 
Appendices functioning as supporting material. 

  

 
2 Alpha versions of D4.1 - D4.3 related components [M14 - Achieved]. 
3 Final adjustments to the T4.1,4.2 algorithms after pilots first phase concludes [M30]. 
4 KPI-2.2: At least 20 representative GEOSS time-series datasets spatiotemporally augmented as proof of concept; 
chosen collaboratively with CoPs stakeholders; Validation: WP4, WP7 
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2  Notation, basic notions and introduction of key concepts 
It is noted that the solutions delivered within this task (mainly those for P.1 and P.2) are built 

upon the concept  of Gaussian copula (a notion closely related to that of Nataf’s joint distribution 
(Nataf 1962; Der Kiureghian and Liu 1986; Tsoukalas et al. 2018a). Further to this it is noted that 
the methodology employed for P.3 – also in some extent linked with the above concept – is based 
on the notion of multi-scale modelling of stochastic processes.  

With the above in mind, the following sections aim to provide an introduction to the 
theoretical concepts necessary for the development of the proposed methods to address P1-P3. 
Further implementation details and algorithmic step-by-step recipes, specifically designed P1-P3, 
are provided in Section 4. 

It is also remarked that throughout this report, the underbar notation (e.g., 𝑥) is used to 

denote a random variable (RV) or a stochastic process, while the italic typeface (e.g., 𝑥) is 
reserved to denote a realization of it (i.e., a non-random quantity/variable). Furthermore, unless 
stated otherwise, this report concerns univariate discrete-time processes with continuous or 
zero-inflated marginal distributions with finite variance as well as valid (i.e., positive definite) 
autocorrelation structures, which are also non-negative (since they are abundant in 
hydrometeorological processes). 

2.1 Brief introduction to copulas 

In simple terms, copulas are statistical tools that enable the construction of multivariate 
distribution models with arbitrary marginal distributions and given dependence structure (i.e., 
correlation), which in turn allows the modelling and simulation (unconditional and conditional) 
of non-Gaussian random variables and processes. For early-day developments, the interested 
reader is referred to the seminal works of Sklar (1973, 1959) as well as other authors  (e.g., 
Fréchet 1951; Féron 1956; Dall’Aglio 1959; Nataf 1962; Mardia 1970), while more recent and 
general treatments on the topic are provided by Embrechts et al. (2003), Nelsen (2007) or Joe 
(Joe 2014). 

In more detail, copulas have been introduced by Sklar (1973, 1959), more than half-a-century 
ago, and since then have found fruitful ground in a variety of scientific domains, including that of 
hydrology (e.g., Chen and Guo, 2019; Dupuis, 2007; Favre et al., 2004; Grimaldi and Serinaldi, 
2006; Kossieris et al., 2019; Renard and Lang, 2007; Salvadori and De Michele, 2007, 2004; 
Tsoukalas et al., 2020, 2019, 2018a), since there exists no other theoretical framework that is as 
general and as flexible as copulas for multivariate modelling.  

Among the several available copula models, this report is focused on the Gaussian copula 
since it is the only one (along with the student-t copula) that allows the straightforward modelling 
of more than two (2) random variables, which is typical the case operational interest.  

To provide some context, and following the description of Tsoukalas (2018), let 𝒙 =

[𝑥1, … , 𝑥𝑚]T denote a vector of m cross-correlated (yet, time-independent) random variables 

(RVs), indexed using 𝑖, each one characterized by an arbitrarily specified marginal distribution 

function 𝐹𝑥
𝑖
(𝑥) ≔ 𝑃{𝑥𝑖 ≤ 𝑥}, with finite variance; also referred to as cumulative distribution 
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function (CDF). Let also 𝑓𝑥
𝑖
(𝑥) ≔ d𝐹𝑥

𝑖
(𝑥)/d𝑥 denote the corresponding univariate probability 

density function (PDF). Furthermore, let 𝑹 ≔ Corr[𝒙, 𝒙T] denote their (target) correlation matrix 
(𝑚 × 𝑚). 

Let also, 𝒛 = [𝑧1, … , 𝑧𝑚]T be a vector characterized by a m-dimensional multivariate standard 

normal distribution, i.e., 𝒛 ~ 𝒩𝑚(𝝁̃, 𝜮̃), where 𝝁̃: = E[𝒛] = 𝟎T is the mean vector (𝑚 × 1) and 

𝜮̃ ≔ Cov[𝒛, 𝒛T] is the covariance matrix (𝑚 × 𝑚), which has to be positive semi-definite and in 

the case of multivariate standard normal distribution is synonymous with its correlation matrix, 

𝑹̃: = Corr[𝒛, 𝒛T] = 𝜮̃.  

The multivariate standard normal CDF, 𝒩𝑚 is denoted for simplicity as Φ𝑚(𝒛; 𝑹̃), while its 

multivariate PDF as 𝜑𝑚(𝒛; 𝑹̃). Notice that the mean, has been omitted for brevity. Apparently, 

each element of 𝒛 is also characterized by standard normal distribution, Φ(∙) with density 𝜑(∙), 

i.e., 𝑧𝜉~𝒩(0,1).  

The main idea of Gaussian copula lies into establishing the multivariate joint distribution 

𝐹𝒙(𝒙) = 𝐹𝒙(𝑥1, … , 𝑥𝑚) =  𝑃(𝑥1 ≤ 𝑥1, … , 𝑥𝑚 ≤ 𝑥𝑚) of 𝒙 through the joint CDF of 𝒛. Particularly, 

by expressing each element of 𝒛 as, 

 𝑧𝑖 = Φ−1 (𝐹𝑥
𝑖
(𝑥𝑖)) (2.1) 

where Φ−1(∙) denotes the quantile function, else known as inverse cumulative density function 
(ICDF), of the univariate standard normal distribution. It is straightforward to see that by 

employing the probability integral transformation to each marginal CDF we obtain 𝑢𝑖: = 𝐹𝑥
𝑖
(𝑥𝑖) 

which is a uniformly distributed RV in [0, 1] that denotes probability. See also, Papoulis (1991 p. 
101). Nevertheless, through the rules of probability transformation, the joint distribution (CDF) 
of 𝒙 can be written as,  

 𝐹𝒙(𝑥1, … , 𝑥𝑚) = Φ𝑚 (Φ−1 (𝐹𝑥
1
(𝑥1)) , … , Φ−1 (𝐹𝑥

𝑚
(𝑥𝑚)) ; 𝑹̃) (2.2) 

which is identical with the definition provided for the Gaussian copula.  
In brief copulas, denoted with 𝐶(∙), are 𝑚-dimensional distribution functions on [0, 1]𝑚 

with uniform marginal distributions. Sklar (1959), established the theory of copulas and provided 
their general properties. Among them, it has been shown that any multivariate joint distribution 
can be regarded as a copula function. Particularly, Sklar’s theorem states that a multivariate 
distribution 𝐹𝒙(𝒙) = 𝐹𝒙(𝑥1, … , 𝑥𝑚) with marginal CDFs 𝐹𝑥

1
, … , 𝐹𝑥

𝑚
, assuming that they are with 

continuous and differentiable, can be written as, 

Appendix A.  𝐹𝒙(𝑥1, … , 𝑥𝑚) = 𝐶 (𝐹𝑥
1
(𝑥1), … , 𝐹𝑥

𝑚
(𝑥𝑚)) (2.3) 

In this work we are focusing on the Gaussian copula 𝐶𝐺(∙) which is defined as multivariate 

standard normal distribution with correlation matrix 𝑹̃ (e.g., Embrechts et al. 2003),  

 𝐶𝐺(𝒖) = 𝐶(𝑢1, … , 𝑢𝑚) = Φ𝑚(Φ−1(𝑢1), … , Φ−1(𝑢𝑚); 𝑹̃) (2.4) 

which apparently, after some substitutions can be transformed in in Eq. (2.2).  



 
D4.1 

D4.1: Stochastic methods for temporal augmentation and quality improvement of time series 
datasets 

 
 

 

© 2022 EIFFEL v1.0 PAGE 14 of 52 
 
Funded by  
the European Union 

 

Generally, according to copula theory, assuming that both 𝐹𝑥
𝑖
 and 𝐶(∙) are differentiable, 

the joint PDF of 𝒙 can be written as, 

 𝑓𝒙(𝑥1, … , 𝑥𝑚) = 𝑐 (𝐹𝑥
1
(𝑥1), … , 𝐹𝑥

𝑚
(𝑥𝑚)) ∙ ∏ 𝑓𝑥

𝑖
(𝑥𝑖)

𝑚

𝑖=1

 (2.5) 

where 𝑐(∙) denotes the joint PDF (referred also as copula density) of copula 𝐶(∙) and it is given 
by,  

 𝑐 (𝐹𝑥
1
(𝑥1), … , 𝐹𝑥

𝑚
(𝑥𝑚)) = 𝑐(𝑢1, … , 𝑢𝑚) =

𝜕𝑚𝐶(𝑢1, … , 𝑢𝑚)

𝜕𝑢1 ⋯ 𝜕𝑢𝑚
 (2.6) 

In the case of Gaussian copula the joint PDF of 𝒙 is given (cf. Liu and Der Kiureghian 1986), 

 𝑓𝒙(𝑥1, … , 𝑥𝑚) =
𝜑𝑚 (Φ−1 (𝐹𝑥

1
(𝑥1)) , … , Φ−1 (𝐹𝑥

𝑚
(𝑥𝑚)) ; 𝑹̃) 

∏ 𝜑 (Φ−1 (𝐹𝑥
𝑖
(𝑥𝑖)))𝑚

𝑖=1

∙ ∏ 𝑓𝑥
𝑖
(𝑥𝑖)

𝑚

𝑖=1

 (2.7) 

From these equations it is clear that, copula theory, in general, as well as the Gaussian copula 
specifically, allow us to describe complex multivariate distributions using as individual 
components the marginal distributions 𝐹𝑥

1
, … , 𝐹𝑥

𝑚
 and the copula 𝐶(∙), which eventually allow 

the formulation of the joint distribution.  

2.2 Parameter estimation for the Gaussian copula 

Nevertheless, as evidenced by Eq. (2.2) and Eq. (2.7) in the case of Gaussian copula the joint 

distribution of 𝒙 depends on the correlation matrix 𝑹̃ of 𝒛 and not directly on 𝑹 of 𝒙.  

To elaborate, let us consider the inverse (yet equivalent) case where 𝒙 is obtained through 

𝒛 via the following mapping equation: 

 𝑥𝑖 = 𝐹𝑥𝑖
−1 (Φ(𝑧𝑖)) (2.8) 

where 𝐹𝑥𝑖
−1 is the ICDF of variable 𝑥𝑖. It is noted that similar to the previous case (i.e., Eq. (2.1)) 

𝑢𝑖: = Φ(𝑧𝑖) is also a RV uniformly distributed in [0, 1] that denotes probability. A direct outcome 

of Eq. (2.8) is that for two variables 𝑥𝑖 and 𝑥𝑗 their correlation is given by: 

 𝜌𝑖,𝑗 ∶= Corr[𝑥𝑖, 𝑥𝑗]  =
E[𝑥𝑖 𝑥𝑗] − E[𝑥𝑖] E[𝑥𝑗]

√Var[𝑥𝑖] Var[𝑥𝑗]
 (2.9) 

where E[𝑥𝑖], E[𝑥𝑗] and Var[𝑥𝑖], Var[𝑥𝑗] are the mean and variance of 𝑥𝑖 and 𝑥𝑗 respectively, 

which are known since the associated marginal distributions are already specified (and have finite 

variance, otherwise the Pearson correlation coefficient cannot be defined), while E[𝑥𝑖 𝑥𝑗] is given 

by, 

 

E[𝑥𝑖 𝑥𝑗] = E [𝐹𝑥
𝑖

−1 (Φ(𝑧𝑖))  𝐹𝑥
𝑗

−1 (Φ(𝑧𝑗))]  

= ∫ ∫ 𝐹𝑥
𝑖

−1(Φ(𝑧𝑖)) 𝐹𝑥
𝑗

−1 (Φ(𝑧𝑗)) 𝜑2(𝑧𝑖, 𝑧𝑗;  𝜌̃𝑖,𝑗)d𝑧𝑖d𝑧𝑗

∞

−∞

∞

−∞

 

(2.10) 
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where 𝜑2(𝑧𝑖, 𝑧𝑗;  𝜌̃𝑖,𝑗) is the bivariate standard normal PDF.  

By substituting Eq. (2.10) to Eq. (2.9) we obtain, 

 𝜌𝑖,𝑗 =
∫ ∫ 𝐹𝑥

𝑖

−1(Φ(𝑧𝑖)) 𝐹𝑥
𝑗

−1 (Φ(𝑧𝑗)) 𝜑2(𝑧𝑖, 𝑧𝑗;  𝜌̃𝑖,𝑗)d𝑧𝑖d𝑧𝑗
∞

−∞

∞

−∞
− E[𝑥𝑖] E[𝑥𝑗]

√Var[𝑥𝑖] Var[𝑥𝑗]
 

(2.11) 

which for simplicity, let us rewrite it as, 

 𝜌𝑖,𝑗 = ℱ (𝜌̃𝑖,𝑗|𝐹𝑥
𝑖
, 𝐹𝑥

𝑗
 )  (2.12) 

where ℱ(∙) denotes an arbitrary function, which has the meaning that each target 𝜌𝑖,𝑗  is a 

function of 𝜌̃𝑖,𝑗  and the given marginal distributions 𝐹𝑥
𝑖
 and 𝐹𝑥

𝑗
.  

In order to identify the values of 𝜌̃𝑖,𝑗  that result in the target values 𝜌𝑖,𝑗 Eq. (2.12) have to 

be inverted. i.e., 

Appendix A.   𝜌̃𝑖,𝑗 = ℱ−1 (𝜌𝑖,𝑗|𝐹𝑥
𝑖
, 𝐹𝑥

𝑗
 )  (2.13) 

In general, Eq. (2.12), and thus Eq. (2.13), do not have a general closed-form solution, 
with the exception of few special cases (Li and Hammond 1975; Cario and Nelson 1997; Crouse 
and Baraniuk 1999; Xiao 2014), yet it can be approximate with high accuracy using appropriate 
techniques. Herein, and unless stated otherwise, we employ a Monte-Carlo based approach, 
which has been proved effective and efficient (Tsoukalas et al. 2018a). 
All the above highlight that the link between the target correlations 𝜌𝑖,𝑗  of 𝑹 with the 

corresponding elements 𝜌̃𝑖,𝑗  of 𝑹̃. An apparent approach could be setting 𝑹̃ ≡ 𝑹, however, both 

theoretical and empirical evidence have indicated that this assumption will result in 
misspecification of the Gaussian copula model and lead to systematically underestimating 
correlations. The theoretical justification of this behaviour stems from the Pearson correlation 
coefficient itself, since it is not invariant under non-linear monotonic transformations, such as 
those imposed by the ICDFs (Embrechts et al. 1999 p. 8). Therefore, and except the trivial case of 
normal marginal distribution, in order to eliminate biases, it necessary to a priori identify the 
values of 𝜌̃𝑖,𝑗. 

2.3 Derivation of the conditional distribution  

This section extends the rationale of Gaussian copula for the derivation of conditional 
distributions (Tsoukalas 2018) of RVs (and processes) with pre-specified distributions and 
correlation matrix.  

Similarly to the previous sections, let 𝒙 = [𝑥1, … , 𝑥𝑚]T be a m-dimensional vector of RVs, with 
known distributions 𝐹𝑥

1
, … , 𝐹𝑥

𝑚
 and correlation matrix 𝑹, partitioned in a n-dimensional column-

vector 𝒙1
∗ = [𝑥1, … , 𝑥𝑛]T and in a (𝑚 − 𝑛) × 1 column-vector 𝒙2

∗ = [𝑥𝑛+1, … , 𝑥𝑚]T. Let also 𝒉 =
[𝑥𝑛+1, … , 𝑥𝑚]T denote a vector of realizations of 𝒙2

∗  on which we wish to condition the derivation 

of the distribution of 𝒙1
∗  |𝒙2

∗ = 𝒉.  

In order to derive the conditional distribution it suffice to derive the one of the auxiliary RVs 𝒛. 

This can be done by using well-known properties of the auxiliary multivariate standard normal 
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distribution (e.g., Eaton 1983). Particularly, let the auxiliary m-dimensional vector 𝒛 =

[𝑧1, … , 𝑧𝑚]T with 𝒛 ~ 𝒩𝑚(𝟎, 𝑹̃) be similarly partitioned in 𝒛1
∗ = [𝑧1, … , 𝑧𝑛]T and 𝒛2

∗ =

[𝑧𝑛+1, … , 𝑧𝑚]T with sizes 𝑛 × 1 and (𝑚 − 𝑛) × 1 respectively. This allow us to partition the 

equivalent correlation matrix 𝑹̃ as follows (it is also noted that, 𝑹̃12 = 𝑹̃21
T ),  

𝑹̃ = [
𝑹̃11 𝑹̃12

𝑹̃21 𝑹̃22

] with sizes [
𝑛 ×  𝑛 𝑛 × (𝑚 − 𝑛)

(𝑚 − 𝑛) ×  𝑛 (𝑚 − 𝑛) × (𝑚 − 𝑛)
] 

Furthermore, if 𝒛2
∗ = 𝒉̃ = [Φ−1 (𝐹𝑥𝑛+1

(ℎ𝑛+1)) , … , Φ−1 (𝐹𝑥𝑚
(ℎ𝑚))]

T

 then the conditional 

distribution of 𝒛1
∗|𝒛2

∗ = 𝒉̃ is also multivariate normal, i.e., 𝑃(𝒛1
∗ ≤ 𝒛1

∗|𝒛2
∗ = 𝒉̃)~𝒩𝑛(𝝁̃, 𝜮̃), where 

𝝁̃ and 𝜮̃ are given by: 

  𝝁̃ = 𝑹̃12𝑹̃22
−1𝒉̃ (2.14) 

 𝜮̃ = 𝑹̃11 − 𝑹̃12𝑹̃22
−1𝑹̃21 (2.15) 

and denote respectively the conditional mean vector and covariance matrix. The matrix 𝜮̃ can be 

easily calculated by exploiting the fact that it is Schur complement of 𝑹̃22 in 𝑹̃. This allows the 

calculation of 𝜮̃ via the inversion of the matrix 𝑹̃, the subsequent removal of columns and vectors 

that correspond to the variables conditioned upon (i.e., 𝒛2
∗ ), and finally 𝜮̃ is obtained by the 

inversion of the remaining matrix.  
Nevertheless, since Eq. (2.1) holds true, and similar to Eq. (2.2), the conditional CDF of 𝒙1

∗  |𝒙2
∗ =

𝒉 can be written as,  

 
𝐹𝒙1

∗ |𝒙2
∗ =𝒉(𝒙1

∗) = 𝑃(𝒙1
∗ ≤ 𝒙1

∗ |𝒙2
∗ = 𝒉) = 

Φ
𝑛;𝝁̃,𝜮̃

(Φ−1 (𝐹𝑥
1
(𝑥1)) , … , Φ−1 (𝐹𝑥

𝑛
(𝑥𝑛)) ; 𝝁̃, 𝜮̃) 

(2.16) 

where Φ
𝑛;𝝁̃,𝜮̃

(∙) denotes the multivariate joint CDF of 𝒩𝑛(𝝁̃, 𝜮̃). Finally, it is noted that simulation 

from the latter conditional distribution (i.e., generation of conditional stochastic realizations) 
boils down to simulation from a conditional Gaussian distribution and subsequent mapping to 
the target domain (i.e., through Eq. (2.8)). 

2.4 Admissible marginal distributions 

The enhanced flexibility provided by copulas is highlighted by the fact that they can be utilized 
with any marginal distribution model, such as those listed in Error! Reference source not found. 
(typically used to model positive precipitation amounts), as well as with more complex models 
such as zero-inflated (ZI) distributions. It is noted that the latter type of models has been proven 
particularly useful for the probabilistic description of intermittent process, such as, precipitation 
(e.g., Bell, 1987; Kossieris et al., 2019; Lanza, 2000; Tsoukalas, 2022; Tsoukalas et al., 2020), since 
it allows the simultaneous description of both states of the process (i.e., no precipitation, and 
positive precipitation amounts, accounting this way for the extremes of both tails (i.e., minima 
and maxima). The CDF of a zero-inflated distribution is given by,  
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 𝐹𝑥(𝑥) =  {
 𝑝0,                                    𝑥 = 0

 𝑝0 + (1 − 𝑝0)𝐺𝑥(𝑥),   𝑥 > 0  (2.17) 

where 𝑝0 ≔ 𝑃{𝑋 = 0} denotes the probability of observing a zero value (i.e., no precipitation), 
and 𝐺𝑥(𝑥) ≔ 𝐹𝑥|𝑥>0(𝑥) = 𝑃(𝑥 ≤ 𝑥|𝑥 > 0) stands for the continuous distribution part, that 

entails values greater than zero (i.e., positive precipitation amounts). 
Table 1. Typical marginal distribution models for precipitation data. 

Name CDF (𝑏: scale parameter | 𝑎𝑖: shape parameter) Support 

Gamma 𝐹𝒢(𝑥|𝑏, 𝑎) =
1

Γ(𝑏)
𝛾 (𝑏,

𝑥

𝑎
) 𝑥 > 0 

Weibull 𝐹𝒲 = 1 − exp (− (
𝑥

𝑏
)

𝑎

) 𝑥 ≥ 0 

Generalized Gamma 

(Stacy, 1962) 
𝐹𝐺𝐺(𝑥|𝑏, 𝑎1, 𝑎2) = 𝐹𝒢((

𝑥

𝑏
)

𝑎2

, 1,
𝑎1

𝑎2
) 𝑥 > 0 

Exponentiated Weibull 

(Choudhury, 2005) 
𝐹𝒢𝒲 = (1 − exp (− (

𝑥

𝑏
)

𝑎1

))
𝑎2

 𝑥 > 0 

Pareto II (Lomax) 𝐹𝒫𝐼𝐼(𝑥|𝑏, 𝑎) = 1 − (1 +
𝑥

𝑏
)

−𝑎

 𝑥 ≥ 0 

Burr type XII 

(Burr, 1942) 
𝐹ℬ𝓇XII

(𝑥|𝑏, 𝑎1, 𝑎2) = 1 − (1 + (
𝑥

𝑏
)

𝑎1

)
−𝑎2

 𝑥 > 0 

Note: several example applications of these distribution can be found in the domain of 
statistical/stochastic hydrology, or say, water resources in general (e.g., Ganora and Laio, 2015; Hao 
and Singh, 2009; Kossieris et al., 2019; Koutsoyiannis, 2020; Shao et al., 2004; Tsoukalas et al., 2020, 
2019). 

To better illustrate the capabilities of copulas let us consider two hypothetical examples, both 
involving the Gaussian copula. The first (Figure 1) regards the establishment of the joint CDF 
(Figure 1c) of two random variables (RVs), both described by Gamma distribution with identical 
parameters. On the other hand, the second example (Figure 2), while also entailing two RVs, it 
regards RVs with different marginal distributions (i.e., Gamma and Log-Normal) and concerns the 
derivation of the conditional CDF using copulas. As shown in Figure 2 (panel A), the copula-based 
framework suffices to establish the conditional 𝑝-quantiles of interest (i.e., 1 and 99%), as well 
as to derive the conditional PDF of 𝑥1|𝑥2 = 𝑥2 for various values of conditioning (i.e., 𝑥2 = 45 

and 𝑥2 = 65). 
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Figure 1. Hypothetical example of two correlated RVs (𝜌 = 0.8), each modeled by a Gamma 
distribution with parameters 𝑎 = 0.5 and 𝑏 = 1. From left to right, the subplots depict the joint 
PDF in the a) Gaussian and b) copula (i.e., uniform) domain, as well as c) the joint CDF in the actual 
domain.  

 
Figure 2. Hypothetical example of two correlated RVs (𝜌 = 0.7), with 𝑥1~𝒢𝑎𝑚𝑚𝑎(𝑏 = 10, 𝑎 =

2) and 𝑥2~ℒ𝑜𝑔𝒩𝑜𝑟𝑚𝑎𝑙(0.10,  4). The subplots depict, (A) the conditional quantiles in the actual 
domain and (B) conditional PDF of 𝑥1|𝑥2 for 𝑥2: = 𝑥2 = 45 (blue line) and  𝑥2: = 𝑥2 = 65 (green 

line). 

2.5 Basic properties of stochastic processes at a single and multiple 
temporal scales 

The following paragraphs aim to provide a brief introduction to the (temporal) multi-scale 
properties of stochastic processes, which then will be used for the temporal augmentation task 
of lower-scale extrapolation of time series statistics (see section 3.3). 

To provide context, let {𝑥𝑡}
𝑡∈𝑍≥, where 𝑡 denotes the time index, be a discrete-time stationary 

process with arbitrary, continuous or zero-inflated, marginal distribution, 𝐹𝑥(𝑥; 𝜽) ≔ P{𝑥 ≤ 𝑥}, 

where 𝜽 is a vector that denotes the distribution’s parameters. Let also the autocorrelation 

structure (ACS) of the process be denoted by, 𝜌𝜏 ≔ Corr[𝑥𝑡, 𝑥𝑡+𝜏], where 𝜏 ∈ {0, ±1, ±2, … } 
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stands for the time lag. Hereafter, and without loss of generality the parameter vector 𝜽 will be 
omitted, when possible, for the sake of simplicity. 

Let us assume that 𝑥𝑡 refers to a process at a basic time scale 𝑘 = 1. The process can be 

aggregated to any coarser time scale 𝑘 ∈ {2,3, … } by the following operation: 

 𝑋𝑙
(𝑘)

≔ ∑ 𝑥𝑡
𝑘𝑙
𝑡=(𝑙−1)𝑘+1   (2.18) 

where 𝑙 is the new time index. The discrete-time averaged process 𝑥𝑙
(𝑘)

 can be obtained from the 

aggregated process by 𝑥𝑙
(𝑘)

= 𝑋𝑙
(𝑘)

/𝑘. Also note that 𝑋𝑙
(1)

≡ 𝑥𝑙
(1)

≡ 𝑥𝑡. 

As in the basic time scale, at each time scale 𝑘, the averaged process 𝑥𝑙
(𝑘)

 has a marginal 

distribution 𝐹𝑥(𝑘)(𝑥) and an autocovariance structure 𝑐𝜏
(𝑘)

≔ Cov[𝑥𝑙
(𝑘)

, 𝑥𝑙+𝜏
(𝑘)

], highlighting its 

scaling behaviour. Interestingly, some (low-order) statistical quantities can be analytically 
estimated for any level of temporal aggregation (Koutsoyiannis 2010, 2017). In particular, the 

mean of averaged processes is 𝜇(𝑘) = 𝜇(1) = 𝜇, while its variance is given by, 

 𝛾(𝑘) ≔ (𝑐0
(1)

𝑘 + 2 ∑ (𝑘 − 𝜏)𝑘−1
𝜏=1 𝑐𝜏

(1)
) 𝑘2⁄    (2.19) 

where 𝑐𝜏
(𝑘)

≔ Cov[𝑥𝑙
(𝑘)

, 𝑥𝑙+𝜏
(𝑘) ] stands for the auto-covariance function of a discrete-time 

averaged process at any time scale 𝑘. Note also that the variance of the discrete-time aggregated 

and averaged process, defined as 𝛤(𝑘) ≔ Var[𝑋𝑙
(𝑘)

] and 𝛾(𝑘) ≔ Var[𝑥𝑙
(𝑘)

] respectively, are 

linked via 𝛾(𝑘) = 𝛤(𝑘) 𝑘2⁄ . Also, the inverse operation also holds true, 

 𝑐𝜏
(𝑘)

≔
1

𝑘2
(

𝛤(|𝜏+1|𝑘) − 𝛤(|𝜏−1|𝑘)

2
− 𝛤(|𝜏|𝑘)) (2.20) 

Similarly, it is straightforward to express the autocorrelation function at any scale 𝑘 by 𝜌𝜏
(𝑘)

=

𝑐𝜏
(𝑘)

/𝛾(𝑘).  
Beyond these quantities, the majority of high-order statistics cannot be analytically 

estimated solely from the characteristics of the processes at the basic scale, however it is 
interesting to note that such scaling laws also hold for intermittent processes such as 
precipitation (Koutsoyiannis 2006; Tsoukalas 2022). In more detail, intermittent processes are 

characterized by a scaling behaviour of the probability of zero values, i.e., 𝑝0
(𝑘)

= 1 − 𝑝1
(𝑘)

=

P{𝑥(𝑘) = 0}. For simplicity let 𝑝1 = 𝑝1
(1)

 and 𝑝0 = 𝑝0
(1)

. Arguably, the mean and variance at any 

scale 𝑘 provide no information about the degree of intermittency at scales of aggregation 𝑘 > 1. 

This is also apparent by the need of 𝑝0
(𝑘)

 to estimate the mean (𝜇𝑝
(𝑘)

) and the variance (𝛾𝑝
(𝑘)

) of 

positive values at scale 𝑘. The formulas for the estimation of these quantities at scales of 
aggregation 𝑘 > 1 are given by (Tsoukalas 2022), 

 𝜇𝑝
(𝑘)

=
𝜇

𝑝1
(𝑘)

 (2.21) 
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 𝛾𝑝
(𝑘)

=
𝛾(𝑘)𝑝1

(𝑘)
+ 𝜇2𝑝1

(𝑘)
− 𝜇2

(𝑝1
(𝑘)

)
2  (2.22) 

Solving the above equation for 𝛾(𝑘) yields, 

 𝛾(𝑘) =
𝜇2 −  𝜇2𝑝1

(𝑘)
 +  𝛾𝑝

(𝑘)
(𝑝1

(𝑘)
)

2

𝑝1
(𝑘)

 
(2.23) 

which highlights the link between the variance of the whole process (including zeros) with the 
mean and the variance of positive values, as well as with probability of zero at scale 𝑘. Of course, 

when 𝑝1
(𝑘)

= 1 (i.e., 𝑝0
(𝑘)

= 0), 𝛾𝑝
(𝑘)

 and 𝛾(𝑘) are identical quantities. 

3  Recipes for typical temporal augmentation problems 
Building upon the theoretical developments described in the previous section, the following 

three sub-sections provide algorithmic recipes for the three temporal augmentation problems of 
interest. That is: 

P.1: Infilling of time series missing values, 
P.2: Generation of statistically consistent stochastic realizations for time series data, and 
P.3: Lower-scale extrapolation of time series statistics (e.g., temporal downscaling of key 
statistical properties). 

3.1 Infilling of time series missing values 

Basic component of the proposed approach is the use of the Gaussian copula and conditional 
distributions which in turn allow the conditional stochastic simulation of non-Gaussian random 
variables and processes. Due to its generality, the approach is considered ideal for both physical 
and non-physical variables, as well for those exhibiting intermittency, such as rainfall at fine time 
scales (since zero-inflated distribution can be employed). 

In general, the problem of infilling time series missing data can be viewed as a prediction 
problem of continuous variables using as predictands nearby (in space/time) data (hence in 
essence constitutes a regression problem). In light of the above, stochastic simulation from 
conditional distributions appears to be an effective way to cope with this challenge. It is also 
reminded that key target of every infilling method is to provide an estimate of the missing datum 
using an appropriate statistical quantity (conditional to other data), 𝑄, which expresses some 
(conditional) measure of central tendency (typicaly the mean or the median are employed). 

The following sub-sections detail two (2) algorithmic recipes for the infilling of time series 
missing values. The 1st recipe is ideal when data are available/of interest at only one station. 
While the 2nd one can be used when we have available time series data at multiple locations, and 
we wish to infill the missing values using information provided by data at nearby locations. 
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 Algorithmic recipe #1 

Let us assume that we are given a time series 𝑥(𝑡), where 𝑡 ∈ {1, … , 𝑡, … 𝑇}, and 𝑇 denotes 
the total number of time steps, which has 𝑘 known and 𝑛 missing values at time steps 𝑡∗∗ and 𝑡∗ 
respectively. Therefore, let us denote the known values as 𝑦(𝑡∗∗) and missing ones by 𝑥(𝑡∗). 
Hence our target is to sample from the conditional distribution 𝒙∗|𝒙∗∗ = 𝒙∗∗ (note that we now 

use vector/bold typeface notation to denote that the infilling will be performed in a vectorized 
manner). 

For the infilling of missing values 𝑥(𝑡∗) we perform the following steps (for simplicity the 
description is focused on the stationary case, yet its application for the cases of cyclical 
stationarity, cyclostationarity, or even non-stationarity is rather straightforward): 
Calibrating/training the model 
Step 1. Fit a suitable marginal distribution 𝐹𝑥 ∀ 𝑖 ∈ (1, 𝑇), using the non-missing data. 

Step 2. Using the empirical correlation coefficients,  𝜌̂𝜏, estimated up to maximum lag, 𝜏max , fit 
a suitable correlation structure 𝜌(𝜏, 𝜽), where 𝜽 is a vector containing the model’s parameters 

(e.g., for the power exponential model: 𝜌(𝜏, 𝜽) = exp (− (
𝜏

𝜆
)

𝛼

) , 𝜽 = [𝜆, 𝛼])by minimizing the 

following norm (sum squared difference): 

arg min
𝜽

( ∑ (𝜌(𝜏, 𝜽) − 𝜌̂𝜏)2

𝜏max 

𝜏=1

) 

Step 3. Using the information provided by the two previous steps estimate the equivalent 

correlation structure  𝜌̃(𝜏, 𝜽) = ℱ−1(𝜌(𝜏, 𝜽)|𝐹𝑥) up to lag 𝑇, and next transform it to the 

equivalent correlation matrix  𝑹̃(= 𝜮̃) (i.e., the Gaussian copula parameter). 

Step 4. Estimate the parameters 𝝁̃ and 𝜮̃ using Eq. (2.14) and (2.15). 

Step 5. Estimate the (lower triangular) matrix 𝑩 for which it holds that  𝑩𝑩T = 𝜮̃ (typically using 
Cholesky decomposition). 

Step 7. Estimate the vector 𝒙̃∗∗ = [Φ−1 (𝐹𝑥(𝑥∗∗,1)) , … , Φ−1 (𝐹𝑥(𝑥∗∗,𝑘))]
T

, on which we wish to 

condition the generation of RVs realizations. 
Simulation/prediction using the model 

Step 8. Estimate the vector 𝒛 = 𝝁̃ + 𝑩𝜺, where 𝜺 = [𝜀1, … , 𝜀𝑛]T and 𝜀𝒊~𝒩(0,1), and next, map 

the vector 𝒛 to the target domain through the ICDF 𝐹𝑥
−1. In particular, the vector of conditional 

realizations 𝒙∗ ~ 𝒙∗|𝒙∗∗ = 𝒙∗∗ is given by 𝒙 = [𝐹𝑥1
−1(Φ(𝑧1)) , … , 𝐹𝑥𝑛

−1(Φ(𝑧𝑛))]
T

 

Step 9. Repeat Step 8, 𝑁 times (typically set between 2000 and 5000), in order to obtain the 

matrix 𝜲∗ = [𝒙∗,1
Τ , … , 𝒙∗,𝛮

Τ ]
Τ

, where each column contains 𝑁 conditional realizations of the 

random vector 𝒙∗ = [𝑥∗,1, … , 𝑥∗,𝑛]
T

. 

Step 10. For each one of the random variables estimate the conditional statistic of interest that 
expresses a measure of central tendency (e.g., average or median operator). In particular, if we 
opt for the median, which is the suggested one, it is estimated as follows: 
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𝑄𝑥𝜈
≔ Med𝑋𝜈

=  {

 𝑋
[
𝑁+1

2 ],𝜈
                      If  𝛮 is odd.

 𝑋
[
𝑁
2],𝜈

+ 𝑋
[
𝑁
2

+1],𝜈

2
      If 𝑁 is even.

 

Where 𝑋[∙],𝜈 is the order sample of column 𝜈, and 𝛮 the sample size. 

 Algorithmic recipe #2 

As in the previous paragraph, the description of the recipe is focused on the stationary case, yet 
again its application for other cases is rather straightforward. For instance, in the case of monthly 
stationarity, one has to repeat the exact same procedure 12 times (i.e., one for each month). 
Let us assume that we have time series data (of course of the same process) at 𝑚 locations (i.e., 
gauge stations), and that each location, indexed by 𝑖 ∈ (1, … , 𝑚), corresponds to coordinates 
s(𝑖)7 = [𝑠𝑋(𝑖), 𝑠𝑌(𝑖)], where 𝑠𝑋(𝑖) and 𝑠𝑌(𝑖) are the pair’s values at the cartesian system. 
Furthermore, let us assume that at some time step 𝑡∗ ∈ (1, … , 𝑡, … , 𝑇) (e.g., day 𝑡∗, from the total 
𝑇 days/time steps) 𝑛(< 𝑚) stations have missing values and 𝑘 have values, which are denoted 
by the vector 𝒚(𝑡∗) = [𝑦1(𝑡∗), … , 𝑦𝑘(𝑡∗)]T. To infill the missing values of the 𝑛 stations, which 

are symbolized by the vector 𝒙(𝑡∗) = [𝑥1(𝑡∗), … , 𝑥𝑛(𝑡∗)]T, the following steps are employed: 
Calibrating/training the model 
Step 1. Determine the marginal distributions 𝐹𝑥𝑖

 ∀ 𝑖 ∈ (1, 𝑛) and 𝐹𝑦𝑖
∀ 𝑖 ∈ (1, 𝑘) for the RVs of 

the vectors 𝒙 = [𝑥1, … , 𝜈, … , 𝑥𝑛]
T

 and 𝒚 = [𝑦1, … , 𝜅, … , 𝑦𝑘]
T

. 

Step 2. Estimate the correlation matrix 𝑹.  

Step 3. Estimate the equivalent correlation matrix 𝑹̃ (i.e., the Gaussian copula parameter). To 

estimate the elements of this matrix (i.e., 𝜌̃𝑖,𝑗) employ the relationship 𝜌̃𝑖,𝑗 = ℱ−1 (𝜌𝑖,𝑗| 𝐹𝑥𝑖
, 𝐹𝑥𝑗

). 

Step 4. Estimate the matrix 𝑫, with dimensions 𝑚 × 𝑚, which contains the (Euclidean) distances 

𝑑(𝑖, 𝑗) = ‖𝒔(𝑖) − 𝒔(𝑗)‖ = √(𝑠𝑋(𝑖) − 𝑠𝑋(𝑗))
2

+ (𝑠𝑌(𝑖) − 𝑠𝑌(𝑗))
2
 of all stations/locations, which 

correspond to correlations 𝜌̃𝑖,𝑗 and 𝜌𝑖,𝑗. 

Step 5. Using the (empirically-derived) equivalent correlation coefficients, fit a theoretical 
correlation structure 𝜌(𝑑(𝑖, 𝑗), 𝜽), where 𝜽 is a vector containing the model’s parameters (e.g., 

for the power exponential model: 𝜌(𝑑, 𝜽) = exp (− (
𝑑

𝜆
)

𝛼

) , 𝜽 = [𝜆, 𝛼]) using an appropriate 

minimization norm, such as the following one (in this instance, the mean squared difference of 

the off-diagonal elements of matrix 𝑹̃ and the theoretical model): 
 

arg min
𝜽

(
1

𝑚
∑ ∑ (𝜌(𝑑(𝑖, 𝑗), 𝜽) − 𝜌̃𝑖,𝑗)

2
𝑚−1

𝑗=1

𝑚

𝑖=2

) 

 
Simulation/prediction using the model (using the data of time step 𝑡∗) 
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Step 6. Estimate the vector 𝒚̃ = [Φ−1 (𝐹𝑦1
(𝑦1)) , … , Φ−1 (𝐹𝑦𝑘

(𝑦𝑘))]
T

, on which we wish to 

condition the generation of RVs realizations. 

Step 7. Estimate the parameters 𝝁̃ and 𝜮̃ using Eq. (2.14) and (2.15). 

Step 8. Estimate the (lower triangular) matrix 𝑩 for which it holds that  𝑩𝑩T = 𝜮̃ (typically using 
Cholesky decomposition).  

Step 9. Estimate the vector 𝒛 = 𝝁̃ + 𝑩𝜺, where 𝜺 = [𝜀1, … , 𝜀𝑛]T and 𝜀𝒊~𝒩(0,1), and next, map 

the vector 𝒛 to the target domain through the ICDF 𝐹𝑥𝑖
−1. In particular, the vector of conditional 

realizations 𝒙 ~ 𝒙|𝒚 = 𝒚 is given by 𝒙 = [𝐹𝑥1
−1(Φ(𝑧1)) , … , 𝐹𝑥𝑛

−1(Φ(𝑧𝑛))]
T

 

Step 10. Repeat Step 9, 𝑁 times (typically set between 2000 and 5000), in order to obtain the 

matrix 𝜲 = [𝒙1
Τ, … , 𝒙𝛮

Τ ]Τ, where each column contains 𝑁 conditional realizations of the random 

vector 𝒙 = [𝑥1, … , 𝜈, … , 𝑥𝑛]
T

. 

Step 8. For each one of the random variables estimate the conditional statistic of interest that 
expresses a measure of central tendency (e.g., average, or median operator). In particular, if we 
opt for the median, which is the suggested one, it is estimated as follows: 

𝑄𝑥𝜈
≔ Med𝑋𝜈

=  {

 𝑋
[
𝑁+1

2 ],𝜈
                      If  𝛮 is odd.

 𝑋
[
𝑁
2],𝜈

+ 𝑋
[
𝑁
2

+1],𝜈

2
      If 𝑁 is even.

 

Where 𝑋[∙],𝜈 is the order sample of column 𝜈, and 𝛮 the sample size. 

 

3.2 Generation of statistically consistent stochastic realizations for 
time series data 

The theoretical basis provided by the Gaussian copula (see sections 2.1-2.4) allows the 
straightforward simulation of stochastic processes with any marginal distribution (with finite 
variance) and (valid) dependence structure, expressed via the well-known Pearson correlation 
coefficient. Such simulation models can be used for the generation of statistically-consistent 
synthetic realizations of time series data, under a variety of assumptions for the temporal 
dynamics, such as stationarity, cyclo-stationarity and cyclical stationarity (Tsoukalas et al. 2018a, 
b, 2019, 2020; Kossieris et al. 2019). It is also noted that non-stationary models can also be 
developed (Tsoukalas 2018), yet such an application requires knowledge of the evolution of the 
temporal dynamics of the process, which is rarely the case, and thus the employment of such 
models warrants extremes caution. 

In more detail, and by using a similar rationale with random variables, it is possible to 
establish stochastic processes with any target marginal distribution and correlation structure 
through the mapping (similar to Eq. (2.8)) of an appropriately specified auxiliary (stationary or 
cyclostationary) standard Gaussian process (Gp) with zero mean and unit variance, to which an 
equivalent correlation structure is pre-assigned. As shown in section 2, the mapping operation is 
typically a non-linear function, often implemented through the inverse cumulative distribution 



 
D4.1 

D4.1: Stochastic methods for temporal augmentation and quality improvement of time series 
datasets 

 
 

 

© 2022 EIFFEL v1.0 PAGE 24 of 52 
 
Funded by  
the European Union 

 

function (ICDF). These approaches can be viewed as Gaussian copula-based schemes (since they 
rely on the mapping of a Gaussian process) or non-linear versions of the classic (i.e., Gaussian) 
linear stochastic schemes (Tsoukalas et al. 2018c). It is remarked that approaches sharing a 
similar rationale, have been for decades used within the domains of operations research (e.g., 
Cario and Nelson 1996; Biller and Nelson 2003) and probabilistic engineering mechanics (e.g., 
Grigoriu 1998; Deodatis and Micaletti 2001). However, their employment within 
hydrological/earth observation sciences was, until recently, formally unexplored, yet, post 
factum linked with other approaches in hydrological domain (Tsoukalas et al. 2018a).  

In the following sub-sections, and following the general guidelines provided by Tsoukalas 
(2018) and Tsoukalas et al. (2019) we detail two (2) algorithmic recipes for the establishment of 
such models, and thus the generation of statistically-consistent realizations of time series data. 
The 1st recipe is ideal for the generation of synthetic realizations when univariate data are 
available, and of interest. While the 2nd one can be used when we have available time series data 
at multiple locations, and we wish to generate synthetic data at some other location in the region 
(as an analogy one may consider that of spatial interpolation using conditional non-Gaussian 
random fields). 

 Algorithmic recipe #1 

The proposed stochastic simulation recipe is synopsized by the following steps (also graphically 
depicted in Figure 3). 
Step 1. Make an assumption about the temporal dynamics of the process (i.e., stationary or 
cyclostationary, cyclical stationarity), accounting for process properties and the time scale of 
simulation. 
Step 2. Based on the available information (e.g., historical data), as well as expert-knowledge, 
assign appropriate target marginal distribution(s) and identify the target temporal correlation 
structure. 
Step 3. Select a suitable linear stochastic model to simulate the auxiliary Gaussian process (Gp), 
for instance an autoregressive (AR) or a moving average (MA) model. 
Step 4. Estimate the equivalent correlation coefficients for all pairs of variables that are required 
by the parameter estimation procedure of the auxiliary model (i.e., the Gp). 
Step 5. Estimate the parameters of the Gp model through the equivalent correlation coefficients. 
Step 6. Generate a synthetic time series by employing the Gp (say, 𝑧𝑡) – see 1st row of Figure 3. 

Step 7. Map the auxiliary (i.e., Gaussian) time series to the copula domain, say 𝑢𝑡, to obtain a 

realization with uniform marginal distribution - see 2nd row of Figure 3. 
Step 8. Map, using the inverse of the target distribution (i.e., the ICDF), the uniform time series 
to the actual domain in order to attain a realization of the target process (say, 𝑥𝑡) - see 3rd row of 

Figure 3. 
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Figure 3. Step-by-step illustration of the stochastic simulation approach used to generate (a 
stationary) statistically consistent synthetic time series data. The first row illustrates the 
generation of a Gaussian realization with the equivalent correlation structure, the second row its 
transformation to the copula domain (i.e., with uniform marginal distribution), and the third row 
its mapping to the target domain (in this case mapped using a zero-inflated distribution model). 

 Algorithmic recipe #2 

This recipe is essentially identical with the recipe provided in section 3.1.2 for the infilling of 
missing values using information from nearby stations, with the only differences being: a) the 
assumption of a homogenous random field and b) the removal of the last step (i.e., the operator 
quantifying central tendency). This recipe can be viewed also as an approach for spatial 
interpolation and/or a conditional simulation approach for non-Gaussian random fields. For 
completeness the recipe is provided below: 
As in the previous paragraph, the description of the recipe is focused on the stationary case, yet 
again its application for other cases is rather straightforward. For instance, in the case of monthly 
stationarity, one has to repeat the exact same procedure 12 times (i.e., one for each month). 
Let us assume that we have a grid of points, say a grid with 𝑚 cells, and that each cell is indexed 
by 𝑖 ∈ (1, … , 𝑚), that corresponds to coordinates s(𝑖) = [𝑠𝑋(𝑖), 𝑠𝑌(𝑖)], where 𝑠𝑋(𝑖) and 𝑠𝑌(𝑖) 
are the pair’s values at the cartesian system. 
Furthermore, let us assume that at some time step 𝑡∗ ∈ (1, … , 𝑡, … , 𝑇) (e.g., day 𝑡∗, from the total 
𝑇 days/time steps) 𝑛(< 𝑚) cells have missing values and 𝑘 have values, which are denoted by 
the vector 𝒚(𝑡∗) = [𝑦1(𝑡∗), … , 𝑦𝑘(𝑡∗)]T. To generate conditional stochastic realization to the 𝑛 

cells, which are symbolized by the vector 𝒙(𝑡∗) = [𝑥1(𝑡∗), … , 𝑥𝑛(𝑡∗)]T, the following steps are 
employed: 
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Calibrating/training the model 
Step 1. Determine the marginal distributions 𝐹𝑥  ∀ 𝑖 ∈ (1, 𝑚) for the RVs of the vectors 𝒙 =

[𝑥1, … , 𝜈, … , 𝑥𝑛]
T

 and 𝒚 = [𝑦1, … , 𝜅, … , 𝑦𝑘]
T

. Due to homogeneity of the field, the distribution is 

identical for cells (i.e., 𝐹𝑥 ≡ 𝐹𝑦).  

Step 2. Estimate the correlation matrix 𝑹.  

Step 3. Estimate the equivalent correlation matrix 𝑹̃ (i.e., the Gaussian copula parameter). To 

estimate the elements of this matrix (i.e., 𝜌̃𝑖,𝑗) employ the relationship 𝜌̃𝑖,𝑗 = ℱ−1(𝜌𝑖,𝑗| 𝐹𝑥 , 𝐹𝑥). 

Step 4. Estimate the matrix 𝑫, with dimensions 𝑚 × 𝑚, which contains the (Euclidean) distances 

𝑑(𝑖, 𝑗) = ‖𝒔(𝑖) − 𝒔(𝑗)‖ = √(𝑠𝑋(𝑖) − 𝑠𝑋(𝑗))
2

+ (𝑠𝑌(𝑖) − 𝑠𝑌(𝑗))
2
 of all stations/locations, which 

correspond to correlations 𝜌̃𝑖,𝑗 and 𝜌𝑖,𝑗. 

Step 5. Using the (empirically-derived) equivalent correlation coefficients, fit a theoretical 
correlation structure 𝜌(𝑑(𝑖, 𝑗), 𝜽), where 𝜽 is a vector containing the model’s parameters (e.g., 

for the power exponential model: 𝜌(𝑑, 𝜽) = exp (− (
𝑑

𝜆
)

𝛼

) , 𝜽 = [𝜆, 𝛼]) using an appropriate 

minimization norm, such as the following one (in this instance, the mean squared difference of 

the off-diagonal elements of matrix 𝑹̃ and the theoretical model): 

arg min
𝜽

(
1

𝑚
∑ ∑ (𝜌(𝑑(𝑖, 𝑗), 𝜽) − 𝜌̃𝑖,𝑗)

2
𝑚−1

𝑗=1

𝑚

𝑖=2

) 

Simulation/prediction using the model (using the data of time step 𝑡∗) 

Step 6. Estimate the vector 𝒚̃ = [Φ−1 (𝐹𝑥(𝑦1)) , … , Φ−1 (𝐹𝑥(𝑦𝑘))]
T

, on which we wish to 

condition the generation of RVs realizations. 

Step 7. Estimate the parameters 𝝁̃ and 𝜮̃ using Eq. (2.14) and (2.15). 

Step 8. Estimate the (lower triangular) matrix 𝑩 for which it holds that  𝑩𝑩T = 𝜮̃ (typically using 
Cholesky decomposition).  

Step 9. Estimate the vector 𝒛 = 𝝁̃ + 𝑩𝜺, where 𝜺 = [𝜀1, … , 𝜀𝑛]T and 𝜀𝒊~𝒩(0,1), and next, map 

the vector 𝒛 to the target domain through the ICDF 𝐹𝑥
−1. In particular, the vector of conditional 

realizations 𝒙 ~ 𝒙|𝒚 = 𝒚 is given by 𝒙 = [𝐹𝑥
−1(Φ(𝑧1)) , … , 𝐹𝑥

−1(Φ(𝑧𝑛))]
T

 

Step 10. Repeat Step 9, 𝑁 times, that is equal to the number of conditional realizations we wish 
to generate.  

3.3 Lower-scale extrapolation of time series statistics 

This section regards the so-called statistics’ downscaling problem, which more intuitively can 
be viewed as a lower-scale extrapolation problem of time series statistics, using information that 
is only available at coarser temporal scales.  

Following the notation introduced earlier, let 𝑥𝑡 denote a stationary, and (possibly) non-

Gaussian, stochastic process, and also let us denote any statistical quantity 𝑚(𝑘) of the process 
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as a function of scale 𝑘, which is given by 𝑚(𝑘) ≔ 𝑆(𝑥𝑙
(𝑘)

), where 𝑆(∙) is a function (e.g., a 

statistical estimator) applied to the statistical quantity of interest. For instance, 𝑆[ ∙ ] may 
represent a moment (e.g., variance) of the process, or a quantile (e.g., median or 95%).  
To better showcase the problem posed, let us rephrase it via the following question: 

Given that a set of statistical quantities, {𝑚(𝑖), 𝑚(𝑖 × 2), … , 𝑚(𝑖 × 𝑛)}, is known at time 
scales 𝑖 up to 𝑖 × 𝑛, where 𝑛 = 1, 2, … is an integer index, downscale (reconstruct) the 
statistical quantity 𝑚̂(𝑗) at a finer time scale 𝑗, where 𝑗 ∈ [1, 𝑖) and is an integer. 

A graphical representation of the above question accompanied with the proposed 
methodological framework is given in Figure 4. It is noted that the proposed method is 
demonstrated in Section 4.3using daily precipitation data. 

The proposed approach, which has been recently applied in water demand data (Kossieris et 
al. 2021), builds upon the temporal scaling behaviour exhibited by stochastic processes (see 
section 2.5) and provides a simple and parsimonious approach summarised by the following 
steps: 
Step 0. Considering the resolution of the available time-series data, define the lowest resolution 
of interest 𝑗, and without the loss of generality, treat it as the basic scale, and hence 𝑘 = 𝑗 = 1 
(blue dashed vertical line in Figure 4). For instance, when a time series of daily resolution is 
available, and the lowest resolution of interest is assumed to be 1 hour, i.e., 𝑘 = 𝑗 = 1, then all 
coarser-scale processes are constructed based on the latter resolution. For example, under this 
assumption, the time scales of 2, 3, and 10 days derive according to Eq. (2.18) for 𝑘 = 48, 𝑘 =
72 and 𝑘 = 240, respectively. 
Step 1. Given the observed time series, which now corresponds to time scale 𝑘 = 𝑖 (black dashed 
horizontal line in XX), estimate the statistical quantity of interest at coarser time scales 𝑖 × 𝑛, 
where 𝑛 = 1, 2, … 𝑛𝑚𝑎𝑥 , i.e., estimate {𝑚(𝑖), 𝑚(𝑖 × 2), … , 𝑚(𝑖 × 𝑛𝑚𝑎𝑥)}. 
Continuing the example from Step 0, and hence 𝑖 = 10, estimate the set of quantities 
{𝑚(10), 𝑚(10 × 2), … , 𝑚(10 × 𝑛𝑚𝑎𝑥)} (red dots in Error! Reference source not found.). 
Step 2a. Select a parametric function 𝐻(𝑘; 𝜽), where 𝜽 is a vector of parameters, suitable to 
model the statistical quantity of interest, and hence provide estimates 𝑚̂(𝑘) = 𝐻(𝑘; 𝜽). 
Step 2b. Fit the selected function 𝑚̂(𝑘) = 𝐻(𝑘; 𝜽) on the set of known statistics {𝑚(𝑖), 𝑚(𝑖 ×
2), … , 𝑚(𝑖 × 𝑛𝑚𝑎𝑥)}. The fitted function is displayed via a black solid line in Figure 4. 
This implies solving an optimisation problem with the following formulation (of course, other 
alternative error metrics could be employed): 

 arg min
𝜽

∑ (1 −
𝑚̂(𝑘; 𝜽)

𝑚(𝑘)
)

2𝑖 𝑛max

𝑘=𝑖

 (3.1) 

It is noted that the latter objective function is known as the sum of the squared relative difference 
between observed and modelled quantities. 
Step 3. Using the fitted model, estimate the statistical quantity of interest 𝑚̂(𝑗) at the finer time 
scale 𝑗 ∈ [1, 𝑖). Estimations at finer scales are represented by the blue dashed line in Figure 4. 
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Figure 4. Graphical explanation of the methodological framework for the downscaling of 
statistical quantities at fine temporal scales. Source: Kossieris et al. (2021). 

Evidently, the use of a parametric function to model the scaling behaviour of a statistical quantity 
lies at the core of the proposed methodology. As noted by as noted by Kossieris et al. (2021), key 
advantages of this approach are its parsimony (in terms of parameters) as well as its ability to 
perform extrapolations to lower and coarser scales.  
Such an approach essentially consists an unsupervised approach for the statistics downscaling 
problem since it solely relies on coarser resolution estimations of the statistic of interest – hence 
not involving any prior training/fitting/learning task using the labelled (i.e., target/lower 
resolution) data. The form of the parametric model is related with the characteristics of the 
scaling behaviour exhibited by the statistical quantity of interest (e.g., variance or skewness), and 
thus herein we employ the following function: 

 𝑚(𝑘) = 𝑚[1+(𝜉
−1

𝜂⁄ −1)(𝑘−1)]𝜂
 

(3.2) 

where 𝑚 ≔ 𝑚(1) is the statistical quantity at a basic scale (i.e., 𝑘 = 1), whereas 𝜉 and 𝜂 are the 
model parameters varying in the interval [0, 1]. This model has been initially proposed by 
Koutsoyiannis (2006), for the multi-scale description of rainfall occurrence process, while 
recently it was implemented to model the statistics of water demand processes at multiple 
temporal scales (Kossieris et al. 2021), proving itself as a particularly flexible model. It is noted, 
that alternative models could be employed, requiring although to exhibit a particular 
monotonically decreasing form, such as that of survival functions of distribution models and 
functions of theoretical autocorrelation structures. See also the so-called climacogram 
(Koutsoyiannis 2010, 2017) which is a model particularly tailored for the multi-scale modelling of 
variance. 
Beyond these, it is remarked that the proposed approach is focused on the multiscale modelling 
of the following statistics: (a) probability of zero value, (b) variance, (c) L-variation and (d) L-
skewness. The rationale behind this selection lies on the fact that these statistics are particularly 
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useful for the parameterization of typical stochastic models (e.g., those described in section 3.2). 
In detail, the first statistic quantifies the intermittent behaviour of a process, typically exhibited 
at fine time scales for the physical (e.g., rainfall), while the other three allow the fitting of a 
probability distribution model. Our selection, is opted towards, L-moment statistics (Greenwood 
et al. 1979; Hosking 1990) since they are proven to provide more reliable (high-order moment) 
estimations, compared to classical product-type moments. It is reminded that: L-variation, 𝜏2 =
𝜆2/𝜆1, and L-skewness, 𝜏3 = 𝜆3/𝜆2, defined as ratios of L-moments 𝜆𝑖. L-variation takes values 
in the range [0, 1], while L-skewness is a dimensionless measure of asymmetry, analogous to that 
of skewness coefficient, and can take values in the range [−1, 1] – although it is typically limited 
in [0, 1] for both physical (e.g., rainfall) and non-physical (e.g., water demand) processes since 
they rarely exhibit left-skewed behavior.  
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4  Demonstration of the developed methods 
For the demonstration of the capabilities of T4.1/D4.1 methods we employed a variety of 

variables/processes, which are of course selected in order to be of relevance to the EIFFEL pilots. 
In particular, this report extends the demonstration exercises showcased in the accompanying 
document of MS9 (see also Table 3) by putting special focus to the modelling of precipitation 
processes, since a) it is of interest for all EIFFEL pilots, and b) it is the most “modelling-
demanding” variable since beyond the typical peculiarities of physical processes (e.g., non-
Gaussianity, spatio-temporal dependencies, periodicities), it also exhibits intermittency, an 
aspect that makes such processes a particular modelling challenge. The nine (9) demonstrations 
carried out within this report are summarized below in Table 2. 

Table 2. Summary of demonstration exercises showcased in section 4. 

# Demonstration Variable 
involved 

Dataset employed Variable 
relevant to 
pilot No. # 

D1 Infilling of time 
series missing values 
(recipe #1) 

Streamflow Monthly streamflow time 
series from Nile river (used as 
an example due to its iconic 
status) 

All 

D2 Infilling of time 
series missing values 
(recipe #1) 

Temperature Daily temperature time series 
at Paris station (obtained from 
KNMI) 

All 

D3 Infilling of time 
series missing values 
(recipe #1) 

O3 Hourly O3 time series of Athens Pilot #4 

D4 Infilling of time 
series missing values 
(recipe #2) 

Precipitation Daily precipitation data from 
102 stations in Netherlands 
(obtained from KNMI) 

All and Pilot 1 
in particular 

D5 Generation of 
synthetic time series 
(recipe #1) 

Streamflow Monthly streamflow timeseries 
from Nile river (used as an 
example due to its iconic 
status) 

All 

D6 Generation of 
synthetic time series 
(recipe #1) 

Precipitation 10-minute precipitation of 
Soltau, Germany (data 
obtained from IDW 

All 

D7 Generation of 
synthetic time series 
(recipe #2) 

Precipitation Daily precipitation data from 
102 stations in Netherlands 
(obtained from KNMI) 

All and Pilot 1 
in particular 

D8 Lower-scale 
extrapolation of time 
series statistics 

Precipitation Hourly precipitation data from 
33 stations in Netherlands 
(obtained from KNMI) 

All and Pilot 1 
in particular 
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D9 Lower-scale 
extrapolation of time 
series statistics 

Precipitation Daily gridded (with 0.25 
resolution) precipitation data 
at about 2200 locations (E-OBS 
dataset of ECA&D) masking all 
5 EIFFEL pilots 

All 

Furthermore, as mentioned earlier, beyond the demonstrations detailed in the above table 
and presented herein, it is reminded that the functionality of the proposed methods has been 
showcased at MS9 (i.e., the Alpha version of T4.1), and provided three (3) R scripts, as well as the 
complete code of T4.1/D4.1 methods, that demonstrate, in an interactive manner, using real-
world time series data of various temporal resolutions (spanning from hourly to annual), the 
functionalities of the three computational/analysis engines. Table 3 provides a quick summary of 
the relevant scripts and the type variables involved. 

Table 3. Synopsis of demonstration scripts for T4.1 toolkit Alpha version. 

R script name Description/demo Time series data employed 
1_Demo_Infill.R Infilling of time series 

missing values 
Streamflow (monthly), Temperature 
(monthly and daily), NO2 and O3 (hourly) 

2_Demo_syntheti

c_data.R 
Generation of synthetic 
time series data 

Precipitation (annual, monthly, daily), 
Streamflow (annual and monthly), 
Temperature (annual, monthly and daily) 

3_Demo_Stats_do

wnscaling.R 
Lower-scale 
extrapolation of time 
series statistics 

Precipitation (downscaling of daily statistics 
to hourly statistics) – incl. verification. 

4.1 Infilling of time series missing values 

The methodology developed for the infilling of univariate time series missing values (i.e., 
algorithmic recipe #1) is demonstrated throughout demonstrations D1-D3 via three univariate 
time series of different type (i.e., streamflow, temperature and O3) and of different temporal 
resolution (monthly, daily and hourly). In all cases, and to assess the method, we employed a 
complete time series dataset which has been artificially inflated by missing values (NAs) at 
random time steps. The degree of NAs inflation has been set in all cases equal to 20% of the total 
time series length.  

D1 regards the iconic monthly streamflow time series dataset of Nile River at Aswan dam 
(1870-1945). As shown in Figure 5 the method is capable of infilling the time series missing values 
with remarkable success (𝑅2~0.95), relying only on information provided by the time series per 
se.  
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Figure 5. Demonstration of missing values imputation method using monthly streamflow data 
from the Nile station (1870 - 1945). (Left) Comparison between infilled and observed values. The 
yellow dots at the bottom depict the randomly selected time steps which assumed missing. 
(Right) Scatter plot depicting the observed/original and infilled values. 

The performance of the method is similar for the cases of D2 (daily temperature time series 
at Paris station, GHCN-D station code: FR000007150 PARIS/LE_BOURGET, period: 1900-2000) 
and D3 (hourly O3 data from the Athens pilot, provided by the project partner, period 2016-2018), 
highlighting that the method can perform equally well regardless of the temporal resolution of 
the time series. The results of D2 and D3 are synopsized in Figure 6 and Figure 7 respectively. 

 
Figure 6. Demonstration of missing values imputation method using daily average temperature 
data from Paris station (GHCN-D station code: FR000007150 PARIS/LE_BOURGET, 1900-2000). 
(Left) Comparison between infilled and observed values for the period 1998-2000. The yellow 
dots at the bottom depict the randomly selected time steps which assumed missing. (Right) 
Scatter plot depicting the observed/original and infilled values. 
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Figure 7. Demonstration of missing values imputation method using hourly O3 data from the 
Athens pilot (provided by the project partner). (Left) Comparison between infilled and observed 
values for the period 2017. The yellow dots at the bottom depict the randomly selected time 
steps which assumed missing. (Right) Scatter plot depicting the observed and infilled values. 

Moving to D4, this demonstration showcases the algorithmic recipe #2 for the infilling of missing 
values. It is reminded that this algorithmic recipe can be used when we have available time series 
data at multiple locations, and we wish to infill the missing values using information provided by 
data at nearby locations. Therefore, we employed 102 historical precipitation time series of daily 
resolution spanning across Netherlands (obtained from KNMI), and for the period 2000-2010. For 
their exact locations see Figure 8. Again, and prior employing the infilling method we invoked 
NAs at random time steps and locations. The number of NAs has been set equal to the 20% of 
the total length of the time series, and the employed distribution is the zero-inflated Generalized 
Gamma distribution. To obtain a better picture of the distribution of the missing values across 
the 102 locations, Figure 9 provides a time series of the NAs count per time step. It is observed 
that at each time step the average number of missing values is 20, while in some instances they 
exceed 30 (out of 102). Figure 10, via scatter plot among the true (i.e., the original) and infilled 
values, provides a quick summary of the method’s application, highlighting the remarkable ability 
of the method to infill successfully the missing values of intermittent processes (𝑅2 = 0.827 and 
MSE = 3.89), such as precipitation, without having the problem of predicting negative values (a 
property attributed to the use of conditional simulation in combination with zero-inflated 
distributions). It is noted that as for comparison purposes we employed the particularly popular 
(with about 3000 citations since 2018), missForest R package (Stekhoven and Buhlmann 2012), 
which is considered state-of-the-art for missing values imputation. The use of the latter package 
- using the exact same dataset - resulted in 𝑅2 = 0.808 and MSE = 4.33. It could be argued that 
this kind of performance reserves a place for the proposed method in the state-of-the-art of 
infilling methods. 
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Figure 8. Map depicting the location of the 102 daily precipitation gauge stations employed in D4. 

 
Figure 9. (Left)Total number of NAs invoked at each time step. (Right) Histogram of NAs count. 
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Figure 10. Comparison between the true and infilled values, obtained using the (left) proposed 

method and (right) missForest R package. 

4.2 Generation of statistically consistent stochastic realizations for 
time series data 

To demonstrate the synthetic data generation approach (algorithmic recipe #1) we started 
by D5 and by employing the iconic monthly streamflow time series dataset of Nile River at Aswan 
dam (1870-1945). Figure 11 provides a quick summary of this demonstration (which relies on a 
cyclostationary non-Gaussian stochastic model with either a Burr type XII or a Generalized 
Gamma distribution – see section 3.2 and 3.2.1). In particular, panel (a) depicts the historical Nile 
monthly streamflow series (March 1870 to December 1945), panel (b) the synthetically 
generated time series for a randomly selected window of 80 years. While, panel (c) provides a 
monthly-wise comparison of historical and simulated L-moments, as well as lag-1 month-to-
month correlations coefficients, highlighting the ability of the proposed approach to generate 
synthetic time series with the desired (target) statistical/probabilistic characteristics.  

In the same spirit, D6 demonstrates the same algorithmic recipe, yet in this case by employing 
a much more challenging (due to intermittency) historical dataset. In particular, as reference data 
we employ the historical data of 10-min precipitation from Soltau, Germany (data obtained from 
IDW, Station ID 4745), extending from 1999 to 2009. The simulation results of D6 (employing this 
time a zero-inflated Burr type XII distribution) are depicted in Figure 12, where panel (b) provides 
a sample of the generated synthetic time series (for a randomly selected window), which panels 
(c) and (d) provide a comparison among the historical and simulated distribution function and 
autocorrelation structure respectively. The latter are in perfect agreement, highlighting the 
statistical consistency of the synthetically-generated time series. 
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Figure 11. Demonstration of the synthetic data generation method. (a) Historical Nile monthly 
streamflow series (March 1870 to December 1945). (b) Synthetic time series (randomly selected 
window of 80 years). (c). Monthly-based comparison of historical and simulated L-moments, as 
well as lag-1 month-to-month correlations coefficients. Note: in this case a cyclostationary non-
Gaussian stochastic model was employed. 

 
Figure 12. a) Historical 10-min rainfall from Soltau, Germany (data obtained from IDW, Station ID 
4745), extending from 1999 to 2009. b) Sample of the generated synthetic time series (randomly 
selected window). Comparison of historical and simulated c) distribution function and d) 
autocorrelation structure. 

a) b)

c) d)



 
D4.1 

D4.1: Stochastic methods for temporal augmentation and quality improvement of time series 
datasets 

 
 

 

© 2022 EIFFEL v1.0 PAGE 37 of 52 
 
Funded by  
the European Union 

 

The D7 demonstration utilizes the algorithmic recipe #2 of section 3.2 and can be used when 
we have available time series data at multiple locations, and we wish to generate synthetic data 
at some other location in the region (as an analogy one may consider that of spatial interpolation 
using conditional non-Gaussian random fields). For this particular demo we employ the same 
data used in D4, that is 102 historical precipitation time series of daily resolution spanning across 
Netherlands (obtained from KNMI), and for the period 2000-2010. For their exact locations of the 
stations see Figure 8. 

Going through the steps described in 3.2.2 we generate multiple conditional (on the observed 
values of the 102 stations) random fields (RFs) that span across the entire Netherlands (we 
assumed a discretized field with spatial resolution of about 5 km). To provide some visual results,  
Figure 14 depicts 30 consecutive snapshots of the RF that cover Netherlands, where we may 
observe that the simulated conditional RFs preserve the space-time dynamics of precipitation, 
thus being able to generate synthetic precipitation values at any ungauged location (an example 
of such time series is given in Figure 13, which corresponds to synthetically generated time series 
at coordinates: [5.685, 52.223]). 

 
Figure 13. Synthetically generated time series (using a non-Gaussian conditional RF) at a 
randomly selected, ungagged location (coordinates: [5.685, 52.223]), preserving the temporal 
dynamics and intermittency dictated by the historical data. 
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Figure 14. Snapshots of the simulated non-Gaussian random field, spanning across 30 (randomly 
selected) time steps. White cells represent cells with zero values (i.e., no precipitation), while blue 
colour palette is used to depict the non-zero values (light precipitation is depicted with light blue, 
while heavy precipitation with dark blue). 
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4.3 Lower-scale extrapolation of time series statistics 

To demonstrate the methodology of section 3.3 which allows the downscaling (i.e., 
extrapolation at lower time scales) of time series statistics we employ data5 from 33 hourly time 
series of precipitation in Netherlands (see Figure 15 for their exact location). First, the data are 
aggregated to daily scale, and these time series are used to demonstrate the approach. The finer-
resolution time series (i.e., hourly to 24 hours) are used to validate the lower-scale/downscaling 
method of section 3.3. Figure 16 provides an application example of the method for the 
downscaling of: a) probability of zero values (i.e., probability dry), b) variance, c) L-variation and 
d) L-skewness, using data from De Kooy gauging station. 

The results from all 33 stations are summarized in Figure 17, where it is observed that the 
downscaling approach is capable of downscaling the statistics of daily precipitation down to 
hourly scale with acceptable accuracy (remember we only had, and used, a daily time series). 

The final demonstration, D9 regards the downscaling of statistics over country of all the 
project’s pilots (i.e., Greece, Finland, Lithuania, Netherlands, and Spain). In particular, we 
implemented the methodology of section 3.3 for the downscaling of daily precipitation time 
series statistics using data provided by the European Climate Assessment & Dataset project, in 
particular using the latest version available, that is, E-OBSv26.0e6. This precipitation dataset is of 
daily resolution, hence downscaling its statistics to finer temporal scales, such as hourly, is 
significant value and use. To provide some examples, Figure 18 illustrates the probability of zero 
values (i.e., probability dry) of daily precipitation over the countries of the five EIFFEL pilots, while 
Figure 19 depicts the downscaled (using the method of section 3.3) probability of zero values 
(i.e., probability dry) of hourly precipitation over the same regions. Further to these, to provide 
a more complete overview we created online, interactive plots that depict our analysis.  

The following table provides links and description to the analysis. 

Table 4. Description and links to the analysis performed for D9. 

Daily resolution 

Prob. of zero values https://rpubs.com/johntt7/973834 
L-variation https://rpubs.com/johntt7/973833 
L-skewness https://rpubs.com/johntt7/973832 

Hourly resolution (downscaled using the method of section 3.3) 

Prob. of zero values https://rpubs.com/johntt7/973831 
L-variation https://rpubs.com/johntt7/973829 
L-skewness https://rpubs.com/johntt7/973823 

 

 

 

 
5 Obtained from: https://www.daggegevens.knmi.nl/klimatologie/uurgegevens. 
6 Obtained from: https://www.ecad.eu/download/ensembles/download.php. 

https://rpubs.com/johntt7/973834
https://rpubs.com/johntt7/973833
https://rpubs.com/johntt7/973832
https://rpubs.com/johntt7/973831
https://rpubs.com/johntt7/973829
https://rpubs.com/johntt7/973823
https://www.daggegevens.knmi.nl/klimatologie/uurgegevens
https://www.ecad.eu/download/ensembles/download.php
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Figure 15. Map depicting the 33 hourly precipitation gauge stations employed in D8. 

 

 
Figure 16. Demonstration of lower-scale extrapolation method for the downscaling of time series 
statistics (in this case, probability dry, variance, L-variation and L-skewness). The employed 
dataset regards daily precipitation at De Kooy, NL gauging station (obtained from KNMI climate 
explorer), whose statistics have been downscaled down to the temporal scale of 1 hour (𝑘 = 1). 
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Figure 17. Summary of application of the downscaling approach to the 33 hourly precipitation 
station in Netherlands. Each row concerns a different statistic (i.e., probability of zero value, L-

variation, L-skewness, and variance respectively). Note that 𝜖 = 𝑚(𝑘) − 𝑚̂(𝑘), where 𝑚(𝑘) is the 

empirical statistic (probability of zero value, L-variation, L-skewness, or variance), and 𝑚̂(𝑘) the 
statistic estimated by the model. 
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Figure 18. Probability of zero values (i.e., probability dry) of daily precipitation over the countries 
of the five EIFFEL pilots. 
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Figure 19. Downscaled (using the method of section 3.3) probability of zero values (i.e., probability 
dry) of hourly precipitation over the countries of the five EIFFEL pilots. 
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5  Conclusions  
The deliverable details the challenge of temporal augmentation of time series datasets by 

providing a suite of theoretically justified methods/tools for three common modelling 
challenges/problems. In particular D4.1/T4.1 copes with: 

• The infilling of time series missing values, 

• The generation of statistically consistent stochastic realizations for time series data, and 

• The lower-scale extrapolation of time series statistics (e.g., temporal downscaling of key 
statistical properties). 

Common characteristics of the developed methods are: 

• All methods are built upon solid theoretical foundations, since they rely on 
statistical/stochastic concepts (such as copulas, and multi-scale properties of stochastic 
processes). 

• The mechanics of all methods are easily interpretable and explainable, since the use of 
black-box models/mechanisms is fairly limited (if not existent at all) – an aspect in direct 
link with O2. Furthermore, the functionalities of the methods are closely related to the 
needs of the pilots and have horizontal applicability in different steps of pilots’ 
methodological approaches. 

• Given the provided theoretical background, all methods could be straightforwardly 
extended in various directions, such as, modelling of vector time series and spatial 
augmentation, etc. 

As supported by the demonstrations (utilizing more than 2400 time series datasets) 
showcased within this report, by using these tools, it should be possible to address common 
modelling tasks related with temporal augmentation of time series datasets, which could be 
related with the needs of the project’s pilots, and beyond. 

Finally, besides the methodology development aspect, D4.1/T4.1 builds a software tool (in R 
programming language) aiming to increase understanding, reusability and, in a final step, impact 
in the EO community. Therefore, both the code and documentation (incl. use case examples and 
tutorial) have been uploaded to the project’s repository. 
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Appendix A: description of the developed T4.1 R library 
The following paragraphs consist an excerpt (updated when/if deemed necessary) from the 

accompanying document of MS9, which briefly described the associated D4.1/T4.1 R library. 
Following the architectural specifications described in D2.3 of the project, we developed, in 

R programming language, a single interface/library for all D4.1/T4.1 tools where the user has the 
option to choose the one that wishes to employ (i.e., choose among the three methods/tools 
listed above). The rationale behind employing a single interface for the T4.1 tools is that all 
methods require the user to provide as an input a historical time series record, as well as the 
recognition of the potential synergies and continuity between the three methods (e.g., one may 
wish to: infill the missing values of the historical record, downscale its statistics, and then 
generate a stochastic realization of it). The overall architecture of the R library is visualized in 
Figure 20 with the help of a simplified flowchart - for more details on the matter the interested 
reader is referred to D2.3. Direct dependencies of the developed R library are the following 
libraries: anySim, condMVNorm, DEoptim, fGarch, fitdistrplus, homtest, lmom, 
lmomco, lubridate, Matrix, matrixStats, moments, nloptr, readr, stats 

and xts. The above mentioned R libraries are open-source and freely available, as well as can 
be found/obtained from the Comprehensive R Archive Network (CRAN) and/or GitHub.  

 
Figure 20. Flowchart illustrating the High Level Layered Architecture of the unified T4.1 system 
(obtained from D2.3). 

During the development of the Alpha version of the tools special focus was given on the input 
and computational/analysis layer, while the output layer will be further developed during the 
upcoming months.  

As far it concerns functionality, the developed R scripts can be organized in two main 
categories. The first are scripts that contain auxiliary/Utility functions (for a list see Table 5), such 
as functions to import and clean time series data (see import_clean_functions.R), while 
the second regards method/tool-related scripts (see the list and classification provided in Table 
6) developed to consist the computational/analysis layer of T4.1 toolkit. On the other hand, a 
complete list, as well as a brief description of T4.1 library’s R functions can be found in Table 7. 
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Table 5. List of R scripts containing a variety of utility functions useful for developments of T4.1. 

Utility functions 

import_clean_functions.R 

help_funs.R 

distr_funs.R 

cs_funs.R 

error_funs.R 

get_funs.R 

Table 6. List, and classification, of R scripts according to their main functionality (i.e., infilling of 
time series missing values, generation of statistically consistent stochastic realizations for time 

series data, lower-scale extrapolation of time series statistics). 

Infilling of missing values Generation of stochastic realizations Statistics downscaling 

infill_rem_Cycle.R fit_model_stationary.R stats_over_scales.R 

infill_hourlyData.R fit_model_cyclical_stationary.R stats_downscaler.R 

infill_dailyData.R fit_model_cyclostationary.R stats_ObjFun_fitting.R 

infill_monthlyData.R simmodels_funs.R  

Table 7. R functions and brief description of T4.1 library. 

R function Brief Description 

ACFVfromClimaco 

Estimation of the autocorrelation function using as input the process's 
climacogram (i.e., variance over multiple temporal scales) 

aggregation.proc Temporal aggregation of time series 

align.time.down Auxiliary function to clean/adjust the time step of a time series 

apply.periodly Auxiliary function that facilitates some function at periodic manner 

cgFHKC Theoretical climacogram of the Filtered Hurst Kolmogorov process 

countifGreater Find the number of data points greater than a threshold value 

countifSmaller Find the number of data points smaller than a threshold value 

countNA Find the number of NA data points 

csCAS Theoretical autocorrelation of a Cauchy-type process (CAS) 

csCASobj Auxiliary function used to fit the Cauchy-type model to time series data 

csPEXP Theoretical autocorrelation of power exponential process (PEXP) 

csPEXPobj 

Auxiliary function used to fit the power exponential model to time series 
data 

dgam Probability density function of the Gamma distribution 

DistrFit Distribution fitting through quantiles matching  

Distrfitobj Auxiliary function for the distribution fitting through quantiles matching  

dkappa Probability density function of the Kappa distribution 

egam Fitting of the Gamma distribution using L-moments 

ekappa Fitting of the Kappa distribution using L-moments 

elmom Fitting an arbitrary distribution using L-moments 
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fit_model_cyclic

al_stationary Fitting a cyclically stationary non-Gaussian stochastic model 
fit_model_cyclos

tationary Fitting a cyclostationary non-Gaussian stochastic model 
fit_model_statio

nary Fitting a stationary non-Gaussian stochastic model 

fitCS 

Fitting of a theoretical correlation structure (CAS or PEXP) to time series 
data 

FitGGBr 

Fitting of the Generalized Gamma and Burr type XII distributions using L-
moments 

get_day Auxiliary function to select data of a given day (i.e., 1,…,30) 

get_hour Auxiliary function to select data of a given hour (i.e., 0, …, 23) 

get_month Auxiliary function to select data of a given month (i.e., 1, …, 12) 

import_fix_ts Import and clean a csv file containing time series data 

infill_dailyData Infilling of missing values for time series data with daily temporal resolution 

infill_hourlyDat

a 

Infilling of missing values for time series data with hourly temporal 
resolution 

infill_monthlyDa

ta 

Infilling of missing values for time series data with monthly temporal 
resolution 

mburr Moment-generating function of the Burr type XII distribution 

mdagum Moment-generating function of the Dagum distribution 

mgengamma Moment-generating function of the Generalized Gamma distribution 

MHE Error metric based on hyperbolic functions 

MSE Error metric identical to mean squared error 

pburr Cumulative distribution function of the Burr type XII distribution 

pdagum Cumulative distribution function of the Dagum distribution 

pexpweibull Cumulative distribution function of the Exponentiated Weibull distribution 

pgam Cumulative distribution function of the Gamma distribution 

pgengamma Cumulative distribution function of the Generalized Gamma distribution 

pkappa Cumulative distribution function of the Kappa distribution 

qburr Quantile function of the Burr type XII distribution 

qdagum Quantile function of the Dagum distribution 

qexpweibull Quantile function of the Exponentiated Weibull distribution 

qgam Quantile function of the Gamma distribution 

qgengamma Quantile function of the Generalized Gamma distribution 

qkappa Quantile function of the Kappa distribution 

rburr Random number generation for the Burr type XII distribution 

rdagum Random number generation for the Dagum distribution 

rem_dailyCycle Auxiliary function for the infilling of missing values tool 

rem_hourlyCycle Auxiliary function for the infilling of missing values tool 

rem_monthCycle Auxiliary function for the infilling of missing values tool 

remove_leap Remove leap years from xts objects 

rexpweibull Random number generation for the Exponentiated Weibull distribution 

rgam Random number generation for the Gamma distribution 
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rgengamma Random number generation for the Generalized Gamma distribution 

rkappa Random number generation for the Kappa distribution 

s2scor Estimation of season-to-season correlations 
sim_model_cyclic

al_stationary Simulation of non-Gaussian cyclically-stationary process 
sim_model_cyclos

tationary Simulation of non-Gaussian cyclostationary process 
sim_model_statio

nary Simulation of non-Gaussian stationary process 

statfunscale Theoretical scaling law model for statistics 

stats_downscaler Downscale the statistical quantity of interest 

stats_ObjFun_fit

ting 

Fitting of a theoretical scaling law model on observed statistics across 
multiple temporal scales 

stats_over_scale

s Estimate the statistical quantity of interest at multiple temporal scales 

StatsOfSeries Estimate key statistical quantities of time series data 

which.na Find the index of NA data points 

All in all, it can be argued that the Alpha version of T4.1 library (see MS9) address all the 
requirements set in D2.2, at a satisfying level (about 78% completion; see Table 8), while there 
are already included Alpha version for all identified functional and non-functional requirements 
(see also Table 9). 

Table 8. Progress of completion of each requirement specified in in relation to D2.2. 

Requirement 
Identifier 

Name Status Alpha Version 

FN 4.1-1 Generation of statistically consistent 
synthetic time series 

In progress / 55% Included 

FN 4.1-2 Temporal downscaling of statistical 
quantities 

In progress / 55% Included 

FN 4.1-3 Infilling of time series missing values 
(imputation of missing values) 

In progress / 50% Included 

FN 4.1-4 Stochastic methods for augmenting 
the temporal resolution - variables 

In progress / 60% Included 

FN 4.1-5 Stochastic methods for augmenting 
the temporal resolution - process 

In progress / 60% Included 

Note: The first 3 requirements are self-explanatory, while FN 4.1-4 and FN 4.1-5 are linked with 
non-functional requirements. The description of the first (i.e., FN 4.1-4) reads as follows: 
“Suitable for both physical and non-physical processes (e.g., rainfall, temperature, water 
demand time series)”, while the description of the second (i.e., FN 4.1-5) reads as follows: 
“Suitable for stationary and cyclo-stationary processes”. 
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Table 9. Progress of development and the requirements (related with D2.2 and D2.3). 

Component Identifier Name Status 
Requirement 
Identifier 

Temporal Resolution 
Augmentation toolkit 

Temporal Resolution 
Augmentation toolkit 

In progress / 56% 
(derived as the average of the 
status listed in Table 3) 

FN 4.1-1, FN 4.1-2, 
FN 4.1-3, FN 4.1-4, 
and FN 4.1-5 

 


